Package: haldensify 0.2.7
haldensify: Highly Adaptive Lasso Conditional Density Estimation
An algorithm for flexible conditional density estimation based on application of pooled hazard regression to an artificial repeated measures dataset constructed by discretizing the support of the outcome variable. To facilitate flexible estimation of the conditional density, the highly adaptive lasso, a non-parametric regression function shown to estimate cadlag (RCLL) functions at a suitably fast convergence rate, is used. The use of pooled hazards regression for conditional density estimation as implemented here was first described for by Díaz and van der Laan (2011) <doi:10.2202/1557-4679.1356>. Building on the conditional density estimation utilities, non-parametric inverse probability weighted (IPW) estimators of the causal effects of additive modified treatment policies are implemented, using conditional density estimation to estimate the generalized propensity score. Non-parametric IPW estimators based on this can be coupled with sieve estimation (undersmoothing) of the generalized propensity score to attain the semi-parametric efficiency bound (per Hejazi, Benkeser, Díaz, and van der Laan <doi:10.48550/arXiv.2205.05777>).
Authors:
haldensify_0.2.7.tar.gz
haldensify_0.2.7.zip(r-4.5)haldensify_0.2.7.zip(r-4.4)haldensify_0.2.7.zip(r-4.3)
haldensify_0.2.7.tgz(r-4.4-any)haldensify_0.2.7.tgz(r-4.3-any)
haldensify_0.2.7.tar.gz(r-4.5-noble)haldensify_0.2.7.tar.gz(r-4.4-noble)
haldensify_0.2.7.tgz(r-4.4-emscripten)haldensify_0.2.7.tgz(r-4.3-emscripten)
haldensify.pdf |haldensify.html✨
haldensify/json (API)
NEWS
# Install 'haldensify' in R: |
install.packages('haldensify', repos = c('https://nhejazi.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nhejazi/haldensify/issues
causal-inferenceconditional-density-estimatesdensity-estimationhighly-adaptive-lassoinverse-probability-weightsmachine-learningnonparametric-regressionpropensity-score
Last updated 2 months agofrom:58822ff44f. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win | NOTE | Nov 21 2024 |
R-4.5-linux | NOTE | Nov 21 2024 |
R-4.4-win | OK | Nov 21 2024 |
R-4.4-mac | OK | Nov 21 2024 |
R-4.3-win | OK | Nov 21 2024 |
R-4.3-mac | OK | Nov 21 2024 |
Exports:fit_haldensifyhaldensifyipw_shift
Dependencies:abindassertthatclicodetoolscolorspacedata.tabledigestdplyrfansifarverforeachfuturefuture.applygenericsggplot2glmnetglobalsgluegtablehal9001isobanditeratorslabelinglatticelifecyclelistenvmagrittrMASSMatrixmatrixStatsmgcvmunsellnlmeorigamiparallellypillarpkgconfigR6rbibutilsRColorBrewerRcppRcppEigenRdpackrlangscalesshapestringistringrsurvivaltibbletidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Confidence Intervals for IPW Estimates of the Causal Effects of Stochatic Shift Interventions | confint.ipw_haldensify |
HAL Conditional Density Estimation in a Cross-validation Fold | cv_haldensify |
Fit Conditional Density Estimation over a Sequence of HAL Models | fit_haldensify |
Generate Augmented Repeated Measures Data for Pooled Hazards Regression | format_long_hazards |
Cross-validated HAL Conditional Density Estimation | haldensify |
IPW Estimator of the Causal Effects of Additive Modified Treatment Policies | ipw_shift |
Map Predicted Hazard to Predicted Density for a Single Observation | map_hazard_to_density |
Plot Method for HAL Conditional Density Estimates | plot.haldensify |
Prediction Method for HAL Conditional Density Estimation | predict.haldensify |
Print: Highly Adaptive Lasso Conditional Density Estimates | print.haldensify |
Print: IPW Estimates of the Causal Effects of Stochatic Shift Interventions | print.ipw_haldensify |