Package: txshift 0.3.9
txshift: Efficient Estimation of the Causal Effects of Stochastic Interventions
Efficient estimation of the population-level causal effects of stochastic interventions on a continuous-valued exposure. Both one-step and targeted minimum loss estimators are implemented for the counterfactual mean value of an outcome of interest under an additive modified treatment policy, a stochastic intervention that may depend on the natural value of the exposure. To accommodate settings with outcome-dependent two-phase sampling, procedures incorporating inverse probability of censoring weighting are provided to facilitate the construction of inefficient and efficient one-step and targeted minimum loss estimators. The causal parameter and its estimation were first described by Díaz and van der Laan (2013) <doi:10.1111/j.1541-0420.2011.01685.x>, while the multiply robust estimation procedure and its application to data from two-phase sampling designs is detailed in NS Hejazi, MJ van der Laan, HE Janes, PB Gilbert, and DC Benkeser (2020) <doi:10.1111/biom.13375>. The software package implementation is described in NS Hejazi and DC Benkeser (2020) <doi:10.21105/joss.02447>. Estimation of nuisance parameters may be enhanced through the Super Learner ensemble model in 'sl3', available for download from GitHub using 'remotes::install_github("tlverse/sl3")'.
Authors:
txshift_0.3.9.tar.gz
txshift_0.3.9.zip(r-4.5)txshift_0.3.9.zip(r-4.4)txshift_0.3.9.zip(r-4.3)
txshift_0.3.9.tgz(r-4.4-any)txshift_0.3.9.tgz(r-4.3-any)
txshift_0.3.9.tar.gz(r-4.5-noble)txshift_0.3.9.tar.gz(r-4.4-noble)
txshift_0.3.9.tgz(r-4.4-emscripten)txshift_0.3.9.tgz(r-4.3-emscripten)
txshift.pdf |txshift.html✨
txshift/json (API)
NEWS
# Install 'txshift' in R: |
install.packages('txshift', repos = c('https://nhejazi.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nhejazi/txshift/issues
causal-effectscausal-inferencecensored-datamachine-learningrobust-statisticsstatisticsstochastic-interventionsstochastic-treatment-regimestargeted-learningtreatment-effectsvariable-importance
Last updated 2 months agofrom:06ce36d940. Checks:OK: 1 ERROR: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | ERROR | Nov 20 2024 |
R-4.5-linux | ERROR | Nov 20 2024 |
R-4.4-win | ERROR | Nov 20 2024 |
R-4.4-mac | ERROR | Nov 20 2024 |
R-4.3-win | ERROR | Nov 20 2024 |
R-4.3-mac | ERROR | Nov 20 2024 |
Exports:msm_vimshifttxshift
Dependencies:abindassertthatclicodetoolscolorspacedata.tabledigestdplyrfansifarverforeachfuturefuture.applygenericsggplot2glmnetglobalsgluegtablehal9001haldensifyisobanditeratorslabelinglatex2explatticelifecyclelistenvlsplinemagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmeorigamiparallellypillarpkgconfigR6rbibutilsRColorBrewerRcppRcppEigenRdpackrlangscalesshapestringistringrsurvivaltibbletidyselectutf8vctrsviridisLitewithr