Package: biotmle 1.17.1

biotmle: Targeted Learning with Moderated Statistics for Biomarker Discovery

Tools for differential expression biomarker discovery based on microarray and next-generation sequencing data that leverage efficient semiparametric estimators of the average treatment effect for variable importance analysis. Estimation and inference of the (marginal) average treatment effects of potential biomarkers are computed by targeted minimum loss-based estimation, with joint, stable inference constructed across all biomarkers using a generalization of moderated statistics for use with the estimated efficient influence function. The procedure accommodates the use of ensemble machine learning for the estimation of nuisance functions.

Authors:Nima Hejazi [aut, cre, cph], Alan Hubbard [aut, ths], Mark van der Laan [aut, ths], Weixin Cai [ctb], Philippe Boileau [ctb]

biotmle_1.17.1.tar.gz
biotmle_1.17.1.zip(r-4.5)biotmle_1.17.1.zip(r-4.4)biotmle_1.17.1.zip(r-4.3)
biotmle_1.17.1.tgz(r-4.4-any)biotmle_1.17.1.tgz(r-4.3-any)
biotmle_1.17.1.tar.gz(r-4.5-noble)biotmle_1.17.1.tar.gz(r-4.4-noble)
biotmle_1.17.1.tgz(r-4.4-emscripten)biotmle_1.17.1.tgz(r-4.3-emscripten)
biotmle.pdf |biotmle.html
biotmle/json (API)
NEWS

# Install 'biotmle' in R:
install.packages('biotmle', repos = c('https://nhejazi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nhejazi/biotmle/issues

On BioConductor:biotmle-1.31.0(bioc 3.21)biotmle-1.30.0(bioc 3.20)

regressiongeneexpressiondifferentialexpressionsequencingmicroarrayrnaseqimmunooncologybioconductorbioconductor-packagebioconductor-packagesbioinformaticsbiomarker-discoverybiostatisticscausal-inferencecomputational-biologymachine-learningstatisticstargeted-learning

5.00 score 5 stars 5 scripts 8 exports 100 dependencies

Last updated 3 years agofrom:b13f8b4582. Checks:1 OK, 6 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 17 2025
R-4.5-winNOTEJan 17 2025
R-4.5-linuxNOTEJan 17 2025
R-4.4-winNOTEJan 17 2025
R-4.4-macNOTEJan 17 2025
R-4.3-winNOTEDec 18 2024
R-4.3-macNOTEDec 18 2024

Exports:.biotmlebiomarkertmleeifheatmap_icmodtest_icrnaseq_ictoptablevolcano_ic

Dependencies:abindaskpassassertthatBHBiobaseBiocGenericsBiocParallelbitopsbootcaToolsclicodetoolscolorspacecpp11crayoncubaturecurlcvAUCdata.tableDelayedArraydigestdplyrdrtmlefansifarverforeachformatRfutile.loggerfutile.optionsfuturefuture.applygamgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggdendroggplot2ggsciglobalsgluegplotsgtablegtoolshttrIRangesisobanditeratorsjsonliteKernSmoothlabelinglambda.rlatticelifecyclelimmalistenvmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmgcvmimemunsellnlmennlsnpopensslparallellypillarpkgconfigplyrquadprogquantregR6RColorBrewerRcpprlangROCRS4ArraysS4VectorsscalessnowSparseArraySparseMstatmodSummarizedExperimentsuperheatSuperLearnersurvivalsystibbletidyselectUCSC.utilsutf8vctrsviridisLitewithrXVector

Identifying Biomarkers from an Exposure Variable with biotmle

Rendered fromexposureBiomarkers.Rmdusingknitr::rmarkdownon Jan 17 2025.

Last update: 2021-10-12
Started: 2017-01-17